Biorthonormal systems, partial fractions, and Hermite interpolation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Means and Hermite Interpolation

Let m2 < m1 be two given nonnegative integers with n = m1+m2+1. For suitably differentiable f , we let P,Q ∈ πn be the Hermite polynomial interpolants to f which satisfy P (a) = f (a), j = 0, 1, ..., m1 and P (b) = f (b), j = 0, 1, ..., m2, Q (a) = f (a), j = 0, 1, ..., m2 and Q(b) = f (b), j = 0, 1, ..., m1. Suppose that f ∈ C (I) with f (x) 6= 0 for x ∈ (a, b). If m1 − m2 is even, then there ...

متن کامل

Hermite Interpolation Outperforms Nyström Interpolation

Hermite interpolation is shown to be much more stable than Nyström interpolation in the context of solving classic Fredholm second kind integral equations of potential theory in two dimensions using panel-based Nyström discretization. AMS subject classification (2000): 31A10,45B05,65D05,65R20.

متن کامل

Hermite Interpolation and Sobolev Orthogonality

Sobolev orthogonality has been studied for years. For different families of polynomials, there exist several results about recurrence relations, asymptotics, algebraic and differentation properties, zeros, etc. (see, for instance, Alfaro et al. (1999), Jung et al. (1997), Kwon and Littlejohn (1995, 1998), Marcellán et al. (1996), Pérez and Piñar (1996)); but there exist very few results establi...

متن کامل

Quantum Hermite Interpolation Polynomials

Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 1989

ISSN: 0196-8858

DOI: 10.1016/0196-8858(89)90019-5